USING KINECT FOR TOUCHLESS INTERACTION WITH
EXISTING APPLICATIONS

Andrej Cernivec, Ciril Bohak
Faculty of Computer and Information Science
Univerity of Ljubljana
Trzaska 25, 1000 Ljubljana, Slovenia
Tel: +386 1 47 68 483; fax: +386 1 426 46 47
e-mail: ciril.bohak @fri.uni-lj.si

ABSTRACT

In this paper we present a system for touchless interface us-
ing Kinect sensor. The system can be used for general pur-
pose interaction with existing applications. We show a case
study implementation for use with web-browser where user
can interact with the content using gestures. We also present
implementation of the game that uses presented system for
handling interaction with the user. We also present advan-
tages and disadvantages of such framework and give possible
solutions for some of the problems.

1 INTRODUCTION

In the recent times there is increasing demand for natural
user interaction and consequently there is a need for such
systems as well. While there were many implementations of
touchless interfaces in the past [1, 4, 5], most of them were
implemented for use with dedicated applications in limited
environment. In the past there were many different devices
used in such setups, in recent time more interfaces are avail-
able at consumer affordable prices such as Microsoft Kinect!
and Leap Motion?. While the intended primary use of Kinect
was for gaming purposes, many researchers and developers
have successfully used it in more general purpose scenarios.
Both interaction devices were used as an input in different
systems. Use of Kinect is presented in [3], where authors
present a web based kiosk system. Leap motion was used as
a doodling interface presented in [8].

In our case we present a system for general purpose touch-
less interface for use with existing applications on Microsoft
Windows platform. The rest of the paper is organised as fol-
lows: in the following section we present the related work,
in Section 3 we present our implementation. In Section 4
we discuss the advantages and disadvantages of our method.
In the end in Section 5 we give the conclusions and possible
future extensions of presented approach.

Thttp://www.microsoft.com/en-us/kinectforwindows/
Zhttps://www.leapmotion.com/

2 RELATED WORK

The idea of controlling Windows applications using the
Kinect sensor is not new and there have been many at-
tempts to achieve this functionality. Most solutions are based
on Kinect for Windows Software Development Kit, while
some of them use open source libraries like OpenNI® or
OpenKinect*. Basically all of the existing solutions were
open source projects, developed by individual programmers
in their free time. Most common practice is controlling
Windows applications by transforming hand movements into
movements of the mouse cursor as described in [7]. Limited
functionalities of the left and right click are achieved through
simple gestures, like raising one hand or pressing towards the
screen with the palm of the hand.

Some of the solutions extend the functionality to support a
couple of other gestures to control actions like zoom in and
zoom out or even drag and drop. Limited gesture recogni-
tion is also presented in [6]. While some work quite well,
we could not find any of them that are dealing with the is-
sues of controlling the application in harder circumstances,
for example in a public place with a lot of people (e.g. ex-
pos, conventions and conferences). This means that there can
be high level of background noise (in form of people passing
by behind the user) as well as occlusions (in form of peo-
ple passing between the user and the system). That is why
we decided to create our own system that implements all of
the functions of existing solutions and takes a step further in
terms of usability.

3 OUR APPROACH

Our system consists of four main elements:

« PC running Microsoft Windows 7 or above,
« Microsoft Kinect sensor,
« Large computer display or TV screen,

o Software framework.

3https://github.com/OpenNI/OpenNI
“http://openkinect.org/



The idea is that a person can stand in front of a large screen
and control any existing Windows application through touch-
less interface using Kinect sensor. As it is displayed in the
Figure 1, large TV screen is used to display an image from
the computer. Kinect sensor is connected directly to the com-
puter and positioned in front of the TV screen. The appli-
cation was developed using Kinect for Windows SDK, .NET
framework and two open source libraries, Coding4fun Kinect
Toolkit®> and InputSimulator®. Coding4fun Kinect Toolkit is
intended to speed up the process of developing applications
for Kinect by replacing repetitive parts of code with short
commands. The other used library, InputSimulator, helps
with the simulation of mouse and keyboard commands us-
ing Win32 SendInput method.

Figure 1: The scheme of our system.

3.1 System outline

When a person steps in front of the Kinect sensor, he or she
immediately starts to interact with the computer using the
predefined commands. For normal interaction, user has to
have both of his palms wide open and facing the sensor. If
the user moves his right hand, the mouse cursor on the screen
moves accordingly. If he closes and opens the palm of his
right hand while keeping the palm of his left hand open, he
clicks the object under the mouse cursor. By keeping the
right hand palm closed for a longer period of time, the user
can perform drag and drop action. If the user closes the palm
of his left hand and keeps it closed, he can scroll in any di-
rection just by moving his right hand in desired direction.
The distance of the right hand from the starting point trans-
lates into the speed of scrolling. If the user wants to zoom
in, he needs to close both of his palms simultaneously and,
while keeping them closed, pull the hands away from each

Shttp://c4fkinect.codeplex.com//
Shttp://inputsimulator.codeplex.com/

other. Zooming out can be achieved by doing the opposite
action, pulling the hands together. Using this simple com-
mands, user can control and browse through any content on
the screen. This is ideal for several cases, like promoting
products on conventions, info points, public web browsing
and so on.

3.2 Interaction adaptation

To make the experience of using touchless interface easy for
an ordinary user, we had to use different approaches to solve
some problems. The commands needed to be simple, logical
and very limited, so the user could master them very quickly.
Scaling of the moves had to be integrated, because making a
lot of repetitive big moves in front of the screen can be tire-
some. The hardest part was to find the line where user moves
are small enough to be easy and still accurate enough so that
he can select the content on the screen without a problem.
We got the best ratio of scaling moves through testing dif-
ferent settings on a number of users, which turned out to be
about 1:3. Smoothing of users moves also had to be used to
improve accuracy and to avoid unwanted random movement
of the mouse cursor.

Next step was to make sure that all of the gestures were work-
ing as intended and did not collide with each other. The
problem appeared when user tried to use zoom in or zoom
out gestures. These gestures require that the user closes the
palms of both hands at the same time. This turned out to
be hard, because if the user closed one palm slightly before
the other, different gesture would be triggered, for example
mouse click. To avoid this problem, a slight delay was in-
troduced to give the user more time to complete the gesture.
Through testing on a number of users we established that a
delay of 0.7 seconds is enough to avoid gesture mistakes and
still keep the system responsive enough. This was obtained
from an user experience evaluation presented in [2].
Because our main goal was to use the system in public places,
we had to solve the problem of user recognition and control
locking. First generation of Kinect sensor was intended to
simultaneously track the skeletons of two persons, while it
can recognize up to six persons in his field of view. Our
system was designed to allow only one user at a time. We
solved this problem by assigning a unique ID to each user in
a field of view. Only the first person in the field of view was
granted control over the system. As long as the user stayed in
the field of view, other users could not take over the control
or interfere with it. After the first user was done, he would
step aside and the system would grant the control to the next
user and so on.

3.3 System structure

Our system consists of several components as presented in
Figure 2. Kinect is used as an input that sends the data
through the Kinect for Windows SDK. Our application con-
nects to the Kinect Windows SDK and transforms retrieved



data into form appropriate for InputSimulator. Input simula-
tor then sends data to the Windows operating system through
native Windows input method. Coding4Fun is used for easier
implementation of Kinect communication code.

/ Kinect for /
Application ¥ Windows

SDK

Windows

\ : — operating
P system

Figure 2: Scheme of system implementation.

3.4 System goals

The main thing that we wanted to achieve was the ability
to control any Windows application without communicating
with the application. We wanted to develop a system in such
a way that the application we control believes it is controlled
by a normal mouse and keyboard. This way, there would
be no compatibility issues with old or new applications. To
get the desired functionality we used existing Windows APIs
to inject mouse and keyboard commands into the operating
system.

After we implemented user tracking, we used this infor-
mation to implement another function, automatic program
starter. Every time a system detects a new user, it can auto-
matically start any predefined program or open a new web-
site. The idea behind this function is that every time a new
user steps in front of a sensor, a so called “welcome” se-
quence can be started as shown in Figure 3. This way, a new
user can be greeted and introduced to all of the functions our
system enables him to use.

Kinect Kiosk aplikacija

el i Kok i Ko S o v o arorl o e Z desno roko izberite eno od opciil

f <O ol
k//, ) - (¢
)
T - ":\: -
!

Figure 3: An example of welcome screen which can be used
with our system.

Each of the gestures can be separately turned on or off, so
they can be used only if needed. More gestures always means
chances for a user to make a mistake.

3.5 System integration

We tested our implementation of touchless interface in a
real life situation. An IT company from Slovenia wanted to
present itself on an IT conference using touchless interface.
The goal was to stand out and attract people passing by. We
developed a simple browser based game that was controllable
using our touchless interface. The application was developed
for general use and can use conventional means of interac-
tions as well (such as mouse and keyboard). The goal was to
follow a given path with a mouse cursor from start to finish
without touching the borders of the path. To avoid mistakes,
all unnecessary gestures were turned off. The game was in-
teresting to play when using our touchless interface because
every user first had to learn how to guide the mouse cursor
using only his hand and familiarize himself with the respon-
siveness and accuracy of our system. It turned out that some
people had trouble replacing the mouse with a touchless in-
terface while other mastered the game in seconds. It was very
obvious that with a bit of training, usefulness and accuracy
of our system was good. A screenshot of the application is
presented in Figure 4.

Figure 4: A screenshot of example application that uses our
system.

4 DISCUSSION

Even though there are already numerous existing solutions
that enable users to control Windows applications using
Kinect sensor, our system stands out in a number of ways. It
does not only focus on enabling the users to give basic com-
mands using touchless interface but also focuses on dealing
with problems of using such an interface in public places. It
implements functionalities such as user control locking, ges-
ture recognition delay, user movement scaling, selective ges-
ture enabling/disabling and automatic program starter. It was
developed with a specific purpose in mind and therefore con-
centrates on problems that other applications were not meant
to encounter. That is why it deals with the problems better
than other similar applications and is usable not just in a lab
environment but also in real world situations.



On the other hand, our application is limited to only a few
gestures and could be expanded to support other commands.
This way, user could control more complicated applications
or get desired results faster. By expanding our feature set
and improving the quality of already implemented features
we could develop a more all-rounded application that would
be useful in different situations and for different purposes.
The great advantages of presented system is possibility to
use such system with existing windows applications. That
can come in handy in many cases where we want to adapt a
kiosk system for use with such applications. Using separate
hand for pointing and clicking gives user a better accuracy in
selecting the correct user interface (UI) elements.

On the other hand use with existing applications is limited
to some extent due to the limitation in Ul Usually UI el-
ements are just too small for interaction with such system.
There is a possibility of adapting applications for use with
presented system. In the conclusion we give possible adap-
tation of web-based application for easier use with presented
system.

Our system was also tested in the real-life situation at a con-
ference, for purposes of obtaining relevant user feedback.
Users were participants of IT conference, which means that
majority of them had experiences with different ways of in-
teraction. Majority of users gave us positive feedback. Dur-
ing the testing we have realized that one of the main limita-
tions of our system is that it fails in interaction with smaller
Ul elements, where one has to be very observant to pinpoint
the element exactly.

5 CONCLUSION AND FUTURE WORK

In this paper we have presented a system for touchless inter-
action using Kinect sensor, that allows robust user interac-
tion. The system is developed for Microsoft Windows and
allows interaction with native applications. While the idea
of such implementation is great, it shows that there are rare
applications that allow such interaction due to Ul limitations.
We have shown that presented system can be used for kiosk-
based applications, in our case an interactive game, where
user is robustly tracked and the system is not distracted by
the actions in the background.

There are several possible extensions of the presented system
that would improve its usability. One such extension is im-
plementation of intermediate application for web browsers
that would adapt the displayed page for easier interaction
with the system. Such application would “snap” cursor to
the defined links in the website and emphasize them for eas-
ier recognition and interaction. Another extensions of the
system is implementation of more gestures, such as right-
clicking, onscreen keyboard with auto-completion etc.

The presented system was tested in real-life environment
with positive user feedback. We will further develop the sys-
tem and also perform user experience study to get a relevant
feedback from the users.

References

[1] R. Barré, P. Chojecki, U. Leiner, L. Miihlbach, and
D. Ruschin. Touchless interaction - novel chances and
challenges. In J. Jacko, editor, Human-Computer Inter-
action. Novel Interaction Methods and Techniques, vol-

ume 5611 of Lecture Notes in Computer Science, pages
161-169. Springer Berlin Heidelberg, 2009.

[2] C. Bohak and M. Marolt. Kinect kiosk user experience
evaluation. In Proceedings of the 16th International
Multiconference Information Society - IS 2013, pages
201-204, Ljubljana, 2013.

[3] C. Bohak and M. Marolt. Kinect web kiosk framework.
In A. Holzinger, M. Ziefle, M. Hitz, and M. Debevc, edi-
tors, Human Factors in Computing and Informatics, vol-
ume 7946 of Lecture Notes in Computer Science, pages
785-790. Springer Berlin Heidelberg, 2013.

[4] R. Held, A. Gupta, B. Curless, and M. Agrawala. 3d
puppetry: a kinect-based interface for 3d animation. In
R. Miller, H. Benko, and C. Latulipe, editors, UIST,
pages 423-434. ACM, 2012.

[5] R. Johnson, K. O’Hara, A. Sellen, C. Cousins, and
A. Criminisi. Exploring the potential for touchless in-
teraction in image-guided interventional radiology. In
Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI 11, pages 3323-3332,
New York, NY, USA, 2011. ACM.

[6] G. Ruppert, L. Reis, P. Amorim, T. Moraes, and J. Silva.
Touchless gesture user interface for interactive image vi-
sualization in urological surgery. World Journal of Urol-
ogy, 30(5):687-691, 2012.

[7] Y. S. Ryu, D. H. Koh, D. Ryu, and D. Um. Usability
evaluation of touchless mouse based on infrared proxim-
ity sensing. Journal Of Usability Studies, 7(1):31-39,
2011.

[8] M. Thorne, D. Burke, and M. van de Panne. Motion
doodles: An interface for sketching character motion. In
ACM SIGGRAPH 2007 Courses, SIGGRAPH °07, New
York, NY, USA, 2007. ACM.



